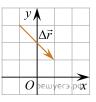

Вариант № 17280

Централизованное тестирование по физике, 2022

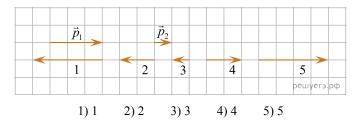
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

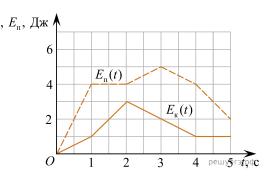
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


1. На рисунке представлена траектория AB движения камня, брошенного горизонтально и движущегося в вертикальной плоскости xOy. Направление скорости камня в точке C указывает стрелка, обозначенная цифрой:

1) 1 2) 2 3) 3 4) 4 5) 5

2. Материальная точка совершила перемещение $\Delta \vec{r}$ в плоскости рисунка (см. рис.). Для проекций этого перемещения на оси Ox и Oy справедливы соотношения, указанные под номером:


1/8


1) $\Delta r_x > 0, \Delta r_y < 0$ 2) $\Delta r_x > 0, \Delta r_y > 0$ 3) $\Delta r_x = 0, \Delta r_y > 0$ 4) $\Delta r_x < 0, \Delta r_y = 0$ 5) $\Delta r_x < 0, \Delta r_y < 0$ 3. Тело движется вдоль оси Ox. Зависимость проекции скорости v_x тела на ось Ox от времени t выражается уравнением $v_x = A + Bt$, где A = 3 м/с и B = 2 м/с 2 . Проекция перемещения Δr_x совершённого телом в течение промежутка времени $\Delta t = 4$ с от момента начала отсчёта времени, равна:

1) 8 M 2) 11 M 3) 28 M 4) 32 M 5) 44 M

4. В начальный момент времени импульс частицы был равен \vec{p}_1 . Через некоторое время импульс частицы стал равен \vec{p}_2 (см. рис.). Изменение импульса частицы $\Delta \vec{p}$ — это вектор, обозначенный цифрой:

5. На рисунке сплошной линией показан график зависимости кинетической энергии $E_{\rm K}$ тела от времени t, штриховой линией — график зависимости потенциальной энергии E_n тела от времени t. Полная механическая энергия $E_{\rm полн}$ тела оставалась неизменной в течение промежутка времени:

1) (0; 1) c 2) (1; 2) c

3) (2; 3) c

4) (3; 4) c

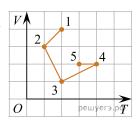
5) (4; 5) c

6. Рабочий удерживает за один конец однородную доску массой m=19 кг так, что она упирается другим концом в землю и образует угол $\alpha=45^\circ$ с горизонтом (см. рис.). Если сила \vec{F} , с которой рабочий действует на доску, перпендикулярна доске, то модуль этой силы равен:

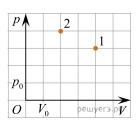
1) 40 H 2) 48 H

3) 67 H

4) 135 H


5) 190 H

7. Установите соответствие между физической величиной и единицей её измерения:


5) A153

8. На *VT*-диаграмме изображён процесс 1–2–3–4–5, совершённый с идеальным одноатомным газом, количество вещества которого постоянно. Внутренняя энергия газа была наибольшей в точке:

1) 1 2) 2 3)3 5) 5

9. Идеальный газ. количество вещества которого постоянно, перевели из состояния 1 в состояние 2 (см. рис.). Если в состоянии 1 температура газа $T_1 = 480 \text{ K}$, то в состоянии 2 температура газа T_2 равна:

1) 320 K 2) 360 K

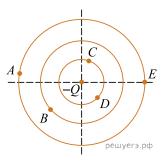
3) 640 K

4) 720 K

5) 960 K

10. Для полного расплавления льда ($\lambda = 330 \text{ кДж/кг}$) массой, находящегося при температуре t = 0 °C, льду сообщили количество теплоты O = 1.1 MДж, то масса льда была равна:

1) 0.003 кг


2) 0.03 кг

3) 0.30 кг

4) 0.36 кг

5) 3.3 кг

11. Неподвижный точечный отрицательный заряд -O находится в вакууме. На рисунке изображены концентрические окружности, в центре которых расположен этот заряд. Если ϕ_A , $\phi_{B}, \, \phi_{C}, \, \phi_{D}, \, \phi_{E}$ — потенциалы электростатического поля заряда в точках A, B, C, D, E соответственно, то правильными соотношениями являются:

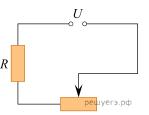
1) $\varphi_A > \varphi_B$

2) $\varphi_C = \varphi_D$

3) $\varphi_E > \varphi_A$

4) $\varphi_D < \varphi_B$

5) $\varphi_C > \varphi_E$


12. Между горизонтальными пластинами плоского воздушного заряженного конденсатора находится в равновесии песчинка массой $m = 4, 8 \cdot 10^{-12}$ кг. Если напряжение на конденсаторе U = 3.0 кB, а модуль заряда песчинки $q = 7, 2 \cdot 10^{-16} \text{ Кл}$, то расстояние d между пластинами конденсатора равно:

1) 2.5 cm

2) 3.0 cm 3) 3.5 cm 4) 4.0 cm

5) 4.5 cm

13. На рисунке изображена схема электрической цепи, состоящей из резистора с сопротивлением R и реостата с максимальным сопротивлением R, подключённой к источнику постоянного напряжения U. Ползунок реостата находится в среднем положении, и в реостате выделяется тепловая мощность $P_1 = 96$ Вт. RЕсли ползунок реостата установить в крайнее правое положение, то тепловая мощность P_2 , выделяемая в реостате, станет равна:

1) 48 B_T

2) 54 B_T

3) 72 B_T

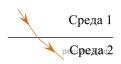
4) 108 B_T

5) 192 B_T

14. Магнитный поток через поверхность, ограниченную замкнутым проводящим контуром, изменяется с постоянной скоростью. Если в контуре возникла ЭДС индукции $\mathscr{E}_{\text{инл}} = -8,0~\text{B}$, то магнитный поток изменился на $\Delta \Phi = 4.0$ Вб, за промежуток времени Δt , равный:

1) 0.50 c

2) 2.0 c 3) 4.0 c


4) 16 c

5) 32 c

15. Груз, подвешенный на пружине и совершающий вертикальные гармонические колебания, проходит положение равновесия. Если частота колебаний груза $v = 0.5 \, \Gamma$ ц, то минимальный промежуток времени Δt , через который груз окажется в положении равновесия, равен:

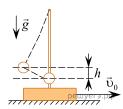
1) 0.25 c 2) 0.5 c 3) 1 c

4) 2 c 5) 4 c **16.** На рисунке изображён параллельный монохроматический световой пучок, испускаемый лазерной указкой и проходящий через границу раздела двух прозрачных сред 1 и 2. Если для сред 1 и 2 соответственно: n_1 и n_2 — абсолютные показатели преломления, λ_1 и λ_2 — длины волн светового излучения, v_1 и v_2 — частоты светового излучения.

ния, v_1 и v_2 — скорости распространения светового излучения, S_1 и S_2 — площади поперечных сечений светового пучка, то правильные соотношения обозначены цифрами:

1)
$$n_1 < n_2$$
 2) $\lambda_1 > \lambda_2$ 3) $\nu_1 = \nu_2$ 4) $\nu_1 < \nu_2$ 5) $S_1 n_1 < S_2 n_2$

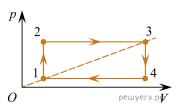
17. Энергия E фотона, вызвавшего фотоэффект, работа выхода $A_{\rm Bыx}$ электрона из вещества, максимальная скорость $v_{\rm max}$ электрона, вылетевшего из вещества, и масса m электрона связаны соотношением, обозначенным цифрой:


1)
$$\frac{mv_{\text{max}}^2}{2} = A_{\text{вых}} + E$$
 2) $\frac{mv_{\text{max}}^2}{2} = E - A_{\text{вых}}$ 3) $\frac{mv_{\text{max}}^2}{2} = -E - A_{\text{вых}}$ 4) $\frac{mv_{\text{max}}^2}{2} = \sqrt{A_{\text{max}}^2 + E^2}$ 5) $\frac{mv_{\text{max}}^2}{2} = A_{\text{вых}} - E$

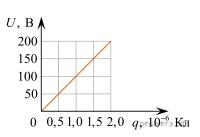
18. Число электронов в электронейтральном атоме палладия равно:

102,905	106,42	107,868	112,411	114,818	118,710
45 <i>Rh</i>	46 <i>Рd</i>	47 <i>Ag</i>	48 <i>Сd</i>	⁴⁹ <mark>Ln</mark>	50 <i>Sn</i>
родий	палладий	серебро	кадмий	индий	олово
192,217	195,084	196,967	200,59	204,383	207,2
77 <i>[r</i>	78 <i>Рt</i>	79 <mark>Au</mark>	80 <i>Нg</i>	81 <i>Tl</i>	82 Pb
иридий	платина	золото	ртуть	таллий	ре свинец ь

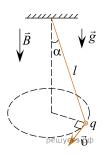
- 1) 107 2) 106 3) 60 4) 46 5) 23
- **19.** Из одной точки с высоты H бросили два тела в противоположные стороны. Начальные скорости тел направлены горизонтально, а их модули $v_1 = 5$ м/с и $v_2 = 10$ м/с. Если расстояние между точками падения тел на горизонтальной поверхности земли L = 45 м, то чему равна высота H? Ответ приведите в метрах.
- **20.** Телу, находящемуся на гладкой наклонной плоскости, образующей угол $\alpha = 60^{\circ}$ с горизонтом, ударом сообщили начальную скорость, направленную вверх вдоль плоскости. Если модуль начальной скорости $v_0 = 48$ м/с, то время t, через которое тело вернется в начальное положение, равно? Ответ приведите в секундах.
- **21.** Однородный алюминиевый шар массой m=27 г, подвешенный к динамометру, полностью погружен в жидкость. Если плотность вещества шара в k=1,2 раза больше плотности жидкости, то динамометр показывает значение силы, равное? Ответ приведите в миллиньютонах.


22. На гладкой горизонтальной поверхности установлен штатив массой M=900 г, к которому на длинной нерастяжимой нити подвешен шарик массой m=100 г, находящийся в состоянии равновесия (см. рис.). Штативу ударом сообщили горизонтальную скорость, модуль которой $v_0=1,0$ м/с. Чему равна максимальная высота h, на которую поднимется шарик после удара? Ответ приведите в миллиметрах.

- **23.** Баллон вместимостью V=100 л содержит водород (M=2,0 г/моль) при температуре t=12 °C. Если давление водорода в баллоне p=450 кПа, то чему равна масса m водорода? Ответ приведите в граммах.
- **24.** Значения плотности $\rho_{\rm H}$ насыщенного водяного пара при различных температурах t представлены в таблице. Если в одном кубическом метре комнатного воздуха при температуре $t_0 = 24$ °C содержится m = 12 г водяного пара, то чему равна относительная влажность ϕ воздуха в комнате? Ответ приведите в процентах.

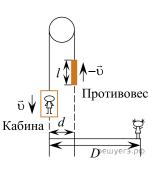

t, °C	21	22	23	24	25
$\rho_{_{H}}, \Gamma/M^3$	18,3	19,4	20,6	21,8	23,0

25. Идеальный одноатомный газ, количество вещества которого v = 1,00 моль, совершил замкнутый цикл, точки 1 и 3 которого лежат на прямой, проходящей через начало координат. Участки 1–2 и 3–4 этого цикла являются изохорами, а участки 2–3 и 4–1 — изобарами (см. рис). Работа, совершённая силами давления газа за цикл, A=831 Дж. Если в точке 3 температура газа $T_3=1225$ К, то чему в точке 1 равна температура T_1 ? Ответ приведите в Кельвинах.



26. На оси Ox в точке с координатой x_0 находится неподвижный точечный заряд. От него отдаляется другой точечный заряд, движущийся вдоль оси Ox. Если при изменении координаты движущегося заряда от $x_1 = 35$ мм до $x_2 = 77$ мм модуль силы взаимодействия зарядов изменился от $F_1 = 64$ мкH до $F_2 = 4,0$ мкH, то чему равна координата x_0 неподвижного заряда? Ответ приведите в миллиметрах.

27. График зависимости напряжения U на конденсаторе от его заряда q изображён на рисунке. Чему равна энергия электростатического поля W конденсатора, при напряжении $U=100~\mathrm{B}$. Ответ приведите в микроджоулях.



- **28.** Сила тока в проводнике зависит от времени t по закону I(t) = B + Ct, где B = 8,0 А, C = 0,50 А/с. Чему равен заряд q, прошедший через поперечное сечение проводника в течение промежутка времени от $t_1 = 2,0$ с до $t_2 = 6,0$ с? Ответ приведите в кулонах.
- **29.** В вакууме в однородном магнитном поле, линии индукции которого вертикальны, а модуль индукции B=5,0 Тл, на невесомой нерастяжимой непроводящей нити равномерно вращается небольшой шарик, заряд которого q=0,40 мкКл (см. рис.). Модуль линейной скорости движения шарика $\upsilon=29$ см/с масса шарика m=22 мг. Если синус угла отклонения нити от вертикали $\sin\alpha=0,10$, то чему равна длина l нити? Ответ приведите в сантиметрах.

- **30.** В идеальном колебательном контуре, состоящем из конденсатора емкостью C=10 нФ и катушки индуктивности, происходят свободные электромагнитные колебания с частотой v=8,2 кГц. Если максимальная сила тока в катушке $I_0=50$ мА, то сему равно максимальное напряжение U_0 на конденсаторе? Ответ приведите в вольтах.
- **31.** На дифракционную решётку нормально падает белый свет. Если для излучения с длиной волны $\lambda_1 = 546$ нм дифракционный максимум четвертого порядка ($m_1 = 4$) наблюдается под углом θ , то максимум пятого порядка ($m_2 = 5$) под таким же углом θ будет наблюдаться для излучения с длиной волны λ_2 , равной? Ответ приведите в нанометрах.

32. Парень, находящийся в середине движущейся вниз кабины панорамного лифта торгового центра, встретился взглядом с девушкой, неподвижно стоящей на расстоянии D=8,0 м от вертикали, проходящей через центр кабины (см. рис.). Затем из-за непрозрачного противовеса лифта длиной l=4,1 м, движущегося на расстоянии d=2,0 м от вертикали, проходящей через центр кабины, парень не видел глаза девушки в течение промежутка времени $\Delta t=3,0$ с. Если кабина и противовес движутся в противоположных направлениях с одинаковыми по модулю скоростями, то чему равен модуль скорости кабины? Ответ приведите а сантиметрах в секунду.

